On Some Generalized Valuation Monoids
نویسندگان
چکیده
The valuation monoids and pseudo-valuation monoids have been established through valuation domains and pseudo-valuation domains respectively. In this study we continue these lines to describe the almost valuation monoids, almost pseudo-valuation monoids and pseudoalmost valuation monoids. Further we also characterized the newly described monoids as the spirit of valuation monoids pseudo-valuation monoids. AMS Mathematics Subject Classification (2010): 13A18, 12J20
منابع مشابه
On Condition (G-PWP)
Laan in (Ph.D Thesis, Tartu. 1999) introduced the principal weak form of Condition $(P)$ as Condition $(PWP)$ and gave some characterization of monoids by this condition of their acts. In this paper first we introduce Condition (G-PWP), a generalization of Condition $(PWP)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. We also ...
متن کاملModels for Quantitative Distributed Systems and Multi-Valued Logics
We investigate weighted asynchronous cellular automata with weights in valuation monoids. These automata form a distributed extension of weighted finite automata and allow us to model concurrency. Valuation monoids are abstract weight structures that include semirings and (non-distributive) bounded lattices but also offer the possibility to model average behaviors. We prove that weighted asynch...
متن کاملValue monoids of zero-dimensional valuations of rank 1
Classically, Gröbner bases are computed by first prescribing a set monomial order. Moss Sweedler suggested an alternative and developed a framework to perform such computations by using valuation rings in place of monomial orders. We build on these ideas by providing a class of valuations on k(x, y) that are suitable for this framework. For these valuations, we compute ν(k[x, y]∗) and use this ...
متن کاملOn a generalization of condition (PWP)
There is a flatness property of acts over monoids called Condition $(PWP)$ which, so far, has received much attention. In this paper, we introduce Condition GP-$(P)$, which is a generalization of Condition $(PWP)$. Firstly, some characterizations of monoids by Condition GP-$(P)$ of their (cyclic, Rees factor) acts are given, and many known results are generalized. More...
متن کاملOn the Varieties of Languages Associated with Some Varieties of Finite Monoids with Commuting Idempotents
Eilenberg has shown that there is a one-to-one correspondence between varieties of finite monoids and varieties of recognizable languages. In this paper, we give a description of a variety of languages close to the class of piecewise testable languages considered by I. Simon. The corresponding variety of monoids is the variety of J -trivial monoids with commuting idempotents. This result is the...
متن کامل